Check answer :

Check answerΒ πŸ‘‰:

Let’s solve this step by step:

First equation:

Shoes+Shoes+Shoes=30\text{Shoes} + \text{Shoes} + \text{Shoes} = 30This implies each pair of shoes isΒ 1010:

10+10+10=3010 + 10 + 10 = 30Second equation:

Boy+Boy+Shoes=20\text{Boy} + \text{Boy} + \text{Shoes} = 20Since the shoes areΒ 1010, we have:

2Γ—Boy+10=202 \times \text{Boy} + 10 = 20Solving for the boy:

2Γ—Boy=10β‡’Boy=52 \times \text{Boy} = 10 \Rightarrow \text{Boy} = 5Third equation:

Burger+Burger+Boy=13\text{Burger} + \text{Burger} + \text{Boy} = 13We know the boy isΒ 55, so:

2Γ—Burger+5=132 \times \text{Burger} + 5 = 13Solving for the burger:

2Γ—Burger=8β‡’Burger=42 \times \text{Burger} = 8 \Rightarrow \text{Burger} = 4Final equation:

Shoe+(BoyΒ withΒ twoΒ smallΒ burgers)Γ—Burger=?\text{Shoe} + (\text{Boy with two small burgers}) \times \text{Burger} = ?Β A single shoe is half of a pair, so it’sΒ 55.Β The boy with two small burgers should representΒ 5+2=75 + 2 = 7.Β The burger isΒ 44.Now, substitute into the equation:

5+(7Γ—4)=5+28=335 + (7 \times 4) = 5 + 28 = 33Answer: 33