Check answerΒ π:
Letβs solve this step by step:
First equation:
Shoes+Shoes+Shoes=30\text{Shoes} + \text{Shoes} + \text{Shoes} = 30This implies each pair of shoes isΒ 1010:
10+10+10=3010 + 10 + 10 = 30Second equation:
Boy+Boy+Shoes=20\text{Boy} + \text{Boy} + \text{Shoes} = 20Since the shoes areΒ 1010, we have:
2ΓBoy+10=202 \times \text{Boy} + 10 = 20Solving for the boy:
2ΓBoy=10βBoy=52 \times \text{Boy} = 10 \Rightarrow \text{Boy} = 5Third equation:
Burger+Burger+Boy=13\text{Burger} + \text{Burger} + \text{Boy} = 13We know the boy isΒ 55, so:
2ΓBurger+5=132 \times \text{Burger} + 5 = 13Solving for the burger:
2ΓBurger=8βBurger=42 \times \text{Burger} = 8 \Rightarrow \text{Burger} = 4Final equation:
Shoe+(BoyΒ withΒ twoΒ smallΒ burgers)ΓBurger=?\text{Shoe} + (\text{Boy with two small burgers}) \times \text{Burger} = ?Β A single shoe is half of a pair, so itβsΒ 55.Β The boy with two small burgers should representΒ 5+2=75 + 2 = 7.Β The burger isΒ 44.Now, substitute into the equation:
5+(7Γ4)=5+28=335 + (7 \times 4) = 5 + 28 = 33Answer: 33